3 ВИДА МЫШЕЧНОЙ ТКАНИ

Вы моргнули, повернули голову, вздохнули, посмотрели вдаль, что-то сказали. Каждую минуту в вашем организме сокращается множество мышц тела. Добавьте к этому то, что сердце бьется, в животе урчит, мочеточник мягко препровождает мочу от почки к мочевому пузырю, а сосуды постоянно поддерживают определенное артериальное давление. Древние говорили: «In motu vita est», что значит «В движении жизнь».


Гистологи выделяют 3 вида мышечной ткани: поперечно-полосатую скелетную, поперечно-полосатую сердечную и гладкую. В основных своих чертах они похожи, но именно нюансы, именно тонкости их разнят до неузнаваемости. Поперечно-полосатая скелетная мышечная ткань образует те самые мышцы, которые переставляют ваши ноги, протягивают вашу руку за чашечкой кофе, сгибают и выпрямляют ваше тело. Если заглянуть в окуляр светового микроскопа, то вы не увидите клеток (картинка I). Действительно, мы на 40% состоим не из клеток (ведь приблизительно столько приходится на массу скелетной мускулатуры). Когда-то на этом месте находились клетки, но в те времена мы еще были эмбрионами. А по мере роста и развития цитоплазма их сливалась (рис. 24), обтягиваясь единой мембраной — сарколеммой (4), ядра (3) становились общими, образовывались длинные многоядерные трубчатые волокна — симпласты (1), из которых и состоит поперечно-полосатая скелетная ткань в конечном варианте.
поперечно-полосатая мышца под микроскопомкартинка поперечно-полосатая ткань
Картинка I. Поперечно-полосатая мышца


Кроме того, под световым микроскопом совершенно отчетливо видно, что название себя прекрасно оправдывает: поперек волокна, чередуя друг друга, располагаются темные и светлые полосы (2). Чтобы лучше рассмотреть, стоит увеличим сильнее симпласт. Схематично он изображен на рис 25. В цитоплазме (3) непосредственно под тонкой сарколеммой (2) расположены вытянутые ядра (4). Соседние мышечные волокна «переслоены» соединительной тканью — эндомизием (1) и многочисленными сосудиками (11). Оказывается, расчерчена не вся цитоплазма. В нее погружены протянутые вдоль всего симпласта многочисленные белковые полоски — миофибриллы (10). Между ними никакой «полосатости» нет: их параллельные пучки (12) окружены митохондриями, эндоплазматической сетью и некоторыми другими органеллами.


Теперь внимательнее рассмотрим строение миофибриллы, например, нижнюю на схеме: куча всяких полосок. Как-нибудь их обозначим для ясности. Толстый светлый промежуток, поделенный пополам тонкой линией, называется I-диском (8), а линия обозначается буквой Z (так называемая Z-линия —6). Два расположенных рядом темных столбика объединяют в А-диск (5), а между ними хорошо видно светлую Н-полоску (7). Участок между рядом расположенными Z-линиями носит название - саркомер (9), который и стоит изучать под электронным микроскопом, чтобы наконец разобраться во всех этих дисках, полосках и линиях (рис. 26, а).
схема мышечного сокращения
Белки миофибриллы представлены двумя сократительными белками. Более тонкие нити белка актина держатся параллельно друг другу, скрепляясь вместе плоской пластинкой, которая и была названа гистологами Z-линией. Актин не способен преломлять свет дважды, и это качество гистологи решили назвать изотропностью. Стоит запомнить, что изотропность и делает участок около Z-линии светлым, а это не что иное, как I-диск. Другой белок называется миозином. Он толще, представительнее и, что привело в восторг мировую физическую общественность, преломляет дважды пучок проходящего через него света, становясь темнее. Это свойство называется анизотропностью, а отсюда и название — А-диск. Нити белка актина и белка миозина взаимно проникают друг в друга. Средняя часть миозиновой «стопки» свободна от контакта с двумя актиновыми, что делает ее чуть более светлой, чем обе зоны взаимопроникновения - это Н-полоса.


Ну и, наконец, как же это все действует? Всё начинается с поступления сигнала, который говорит о необходимости сокращения определённого симпласта, при этом митохондрии выбрасывают необходимое количество энергии, а на миофибриллы из эндоплазматической сети «высыпаются» ионы кальция. Высвобождение ионов запускает биохимическую реакцию, результатом которой становится то, что нити актина проникают глубже между нитями миозина (рис. 26, б). Z-линии как бы сдвигаются из-за сужения Н-полосы. Подобное укорочение всех саркомеров и приводит собственно к укорочению всей мышцы, то есть ее сокращению. Эту мышечную ткань называют еще поперечно-полосатой произвольной, так как мы сами решаем, какую мышцу «побеспокоить» на этот раз. Этого нельзя сказать о поперечно-полосатой сердечной (или непроизвольной) мышечной ткани, строящей миокард.


Последний вид мышц заложен во внутренних органах и сосудах. Гладкая мышечная ткань представлена клетками — миоцитами (рис. 27). Они имеют вытянутую веретенообразную форму. В каждой клетке расположено одно (редко два) ядро. Оно было создано приспособленным к назойливому желанию мышечной клетки почему-то все время сокращаться. В результате ядра миоцитов научились не отставать от хозяев и вместе с ними сжимаются, укорачиваются и даже пружинисто скручиваются вокруг своей оси. В цитоплазме также находятся миозиновые и актиновые нити, однако они не уложены в стройные миофибриллы. Достаточно беспорядочные, они образуют как бы паутину, заполняющую клетку изнутри, однако в целом принцип работы остается прежним (картинка II).
гладкая мышечная ткань под микроскопомгладкомышечные клетки
Картинка II. Гладкая мышечная ткань


Сокращение гладкого миоцита происходит относительно медленно и непроизвольно от нас. Кишечник, сосуды, мочеточник, как бы не спеша, помогают своими движениями прохождению по ним различных образований, будь то кровь или пищевая кашица. Но есть в организме гладкие миоциты «быстрого реагирования»: они складывают мышцы радужки глаза. Именно благодаря этим мышцам зрачок столь стремительно проявляет реакцию на свет (расширяясь или сужаясь).